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Abstract—Network coding has the potential to provide power-
ful support to transmit real-time traffic in wireless network. In
this paper, we utilize pairwise coding to schedule the flows which
have heterogeneous delay constraints and weights. Our goal is to
maximize the weighted sum of scheduled packets that satisfy the
delay constraints. We formulate the problem as an integer linear
programming problem, and propose two algorithms to solve it.
The first algorithm drops the integral constraints and rounds the
fractional solutions in such a way that the rounded solution is also
optimal. Inspired by the first algorithm and for better running
time, we propose the second algorithm based on a minimum cost
flow formulation. The formulation is proved to be equivalent to
the original integer linear programming formulation. Simulations
are conducted to show the effectiveness of our approach over two
greedy algorithms.

I. INTRODUCTION

With the tremendous advance of broadband wireless tech-
nologies, the demand of supporting real-time multimedia ap-
plications has become increasingly important in wireless net-
work [1]. Video-on-demand, battlefield situation information,
online interactive gaming and meeting are typical real-world
applications which specify stringent Quality of Service (QoS)
requirements. In particular, the flows in these applications
typically have hard and, more often than not, heterogenous
delay constraints. However, the time-varying nature of wireless
channel [2] gives rise to great challenges in supporting these
real-time applications. To address this issue, network coding
has been proposed and studied in the past few years, which
is proved to be able to considerably improve throughput and
reliability in wireless networks. Because of its huge advan-
tages, this technique has found a wide range of applications
in real-time traffic delivery (e.g., [3]-[5]).

Currently, there have emerged two primary kinds of network
coding schemes, i.e., inter-session network coding and intra-
session network coding. Rather than mixing packets from
the same flow in intra-session network coding, inter-session
network coding needs to encode packets from multiple flows.
In this paper, we focus on inter-session network coding. One
basic scheme of inter-session network coding is shown in
Fig. 1(a). There are two nodes, say Alice and Bob, exchanging
packets P; and P, through a relay node. The relay node
performs XOR operation and broadcasts P; & P» to both Alice
and Bob.
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(a) Reverse carpooling topology (b) X topology
Fig. 1. Inter-session pairwise network coding

Alice and Bob can obtain wanted packet by XOR-ing
P, & P, with their own packet. Formally, this topology is
called reverse carpooling [6]. The second topology incorpo-
rates opportunistic listening technique, generalizing the reverse
carpooling to X topology as shown in Fig.1(b). Under X topol-
ogy, node n5 can obtain the wanted packet P, through XOR-
ing packet P; @ P» with packet P, which can be overheard
from node n;. Under both topologies, the throughput can be
improved with pairwise coding which encodes two packets
from a pair of flows at one time.

References [5] [6] [7] studied the scheduling of inter-session
coding flows to achieve a balance between throughput and
delay requirement, but none of them considered heterogenous
delay constraints, which, however, are practical concerns for
real-time application scheduling problem [8]-[10].

In this paper, we study the problem of Optimal Pairwise
Coding Scheduling (OPCS) in wireless network. The flows
have pairwise coding opportunities, heterogeneous delay con-
straints and packet weights considering flow priority. Our goal
is to maximize the weighted sum of packets which successfully
scheduled within their delay constraints. The contributions of
our work are as follows:

1) We present an analytical optimization model for schedul-
ing flows with pairwise coding opportunities, heteroge-
neous delay constraints and weights. In our settings for
this model, the relay can perform pairwise coding on any
pair of flows satisfying reverse carpooling topology or X
topology, and the flows may have random arrival patterns,
various delay constraints and different weights.

2) We formulate the problem as Integer Linear Programming
(OPCS-ILP) and drop the integral constraints to construct
a Linear Programming problem (OPCS-LP). We prove
that any optimal solution to OPCS-LP can be equivalently
transformed to an optimal solution to OPCS-ILP within
polynomial time.



3) We further propose a more efficient optimal solution
based on Minimum Cost Flow (OPCS-MCF) by uncov-
ering the relationships among coding flows.

4) Finally, we compare our optimal solution with other two
algorithms, Maximum Weight Packet First (MWPF) [5]
and Urgent Packet First (UPF).

The remainder of the paper is organized as follows. Section
IT introduces related works. We formulate the optimization
framework in Section III and provide two optimal solutions in
Section I'V. Experimental results and conclusion are presented
in Sections V and VI, respectively.

II. RELATED WORKS

While abundant research works such as [8], [9] and [10]
have been devoted to scheduling real-time traffic with het-
erogenous delay requirements over wireless network, the
results may not be directly applied to coding flows. One
major challenge for scheduling coding traffic is that coding
schemes make the dependence among flows more complicated.
References [3] [11] studied the scheduling with intra-session
network coding. Yang et al. [3] focused on the scenario of
broadcasting packets at access point (AP) and provided a
scheduling policy which strikes a balance between maximizing
throughput and minimizing packets delay through the adjust-
ment of coding blocks. As for works on inter-session network
coding (e.g., [5] [12] [7] [6]), Seferoglu et al. [5] studied
the scheduling of video streaming over wireless network,
and proposed a heuristic approach to improve both video
quality and throughput. An end-to-end delay analysis of coding
flows was first provided in [7]. However, these works did not
consider heterogeneous hard delay constraints of inter-session
coding flows.

III. SYSTEM MODEL
A. Network Model

We consider a wireless network operating a time division
multiplexing scheme, and focus on a single relay to forward
flows from various sources to destinations. We apply a discrete
time model where time is slotted and numbered as 1,2,3,...
[13]-[15]. The relay node can make exactly one transmission
in a time slot and the duration of a time slot is set to be
the time for broadcasting one packet. Besides that, a set of

T consecutive slots is called an interval. Let Fdéf{l7 T}
We assume that there are N flows 1,2,..., N passing relay
node R during an interval I', creating N virtual queues g €
{1,2,...N}. The length of ¢; is I; at the beginning of I". For
packets arriving later, they are buffered at relay and are not
involved in current round of scheduling.

Let T; (T; < T) be the delay requirement of packets in
flow f; so that packets in g; should be scheduled before time
T;. Without loss of generality, we assume that the queues are
arranged in an increasing order of delay requirements such
that 77 < Ty < --- < Ty. The weight w; of packets in f;
is decided by the priority of f;. We assume the number of

Fig. 2.

Tllustration of network model

scheduled packets from flow f; during an interval is n;, then
we define the utility U as

The relay node can perform pairwise coding on any pair of

flows if they satisfy reverse carpooling topology in Fig. 1(a) or
X topology in Fig. 1(b). Under the considered schemes, each
flow can code with at most one flow, and we refer to them
as a coding pair. The coding packet can be sent in only one
time slot while containing two native packets. Our objective
is to maximize the total utility of flows with different delay
constraints and weights, where the flows have pairwise coding
opportunities among them. These two topologies are quite
typical in ad-hoc network and mesh network, so the relay node
can find many pairwise coding opportunities on flows passing
through it. Additionally, Immediately-Decodable intersession
Network Coding has substantially smaller decoding delay,
and incurs much lower encoding complexity [16]. It is both
practical and reasonable for us to consider pairwise coding
scheme.

We illustrate our model in Fig. 2. There are five unicast
flows passing through relay node R. f; from ns to ng is
a single flow which has no coding opportunity, fo from ns
to ny and f3 from ny to ny satisfy reverse carpooling and
constitute a coding pair. f; from nz to n; and f5 from
ng to ny satisfy X topology and constitute another coding
pair. Note that not all packets in the flow pairs have coding
opportunities due to channel error in X topology. Nevertheless,
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Fig. 3. Tllustration of standard schedule

we can identify these packets by reception report or delivery
probability estimation introduced in [17]. In this case, the
packets in a coding pair which can not be used in coding
will be labeled as two new single flows.



As for the flows fy and f5 in Fig. 2, the packets in f; which
do not have coding opportunity constitute a new single flow
called fg, and the packets in f; which do not have coding
opportunity constitute another new single flow called f;. We
depict them by dashed line in Fig. 2.

B. Problem Formulation

We define two sets for flows passing through relay node, set
‘Ps consists of single flows which do not have coding opportu-
nity, set P, includes flow pairs with coding opportunity. In the
network model illustrated in Fig. 2, we have Py = {1,6,7}
and P. = {(2,3),(4,5)}. For single flow k € P,, we refer
to the packets that are successfully transmitted in fj as single
packets S. As for coding pair (i, j) € P, with i < j, we refer
to the encoding packets for two flows that are successfully
transmitted as double packets D;. For packets which may be
sent alone without coding in f; or f;, we refer to them as
residual packets R; and R; respectively. By our definition,
we can further deduce that only one flow in (4, j) has residual
packets, i.e., It; - R; = 0, otherwise the residual packets from
both sides can be coded together in continue. Now we define
an standard form of solution in our Optimal Pairwise Coding
Scheduling (OPCS) problem for better illustration.

Definition 1: (standard schedule). A standard schedule
for OPCS is an ordered sequence of packets sent during an
interval. Packets from the same flow is sent consecutively, and
all packets in the scheduling are arranged in an increasing
order of delay requirements.

That is to say the packets are ordered in consecutive blocks
of D, R, S from f; to fy in a standard schedule. Note that
the coding packet has the same delay constraint as the flow
with smaller delay constraint in a coding pair.

Theorem 1: Given any feasible schedule during an interval,
we can transform it into an equivalent standard schedule.

Proof: For any feasible schedule, consider two consecu-
tive packets in this schedule. If they are from different flows,
we can move the one that has shorter delay constraint ahead of
the other. Then the delay constraints of both packets can still
be satisfied, and the utility remains the same. Repeating this
operation transforms the schedule to be a standard schedule.

|

We use an example in Fig. 3 to illustrate standard schedule
by D, R, S. There are five flows fi, fo, f3, fa, f5 passing
through relay node R. (f1, f2) and (f3, f1) are two couples of
coding pair, and f5 is a single flow. It holds that 73 < T3 <
T3 < Ty < T5 and Iy < lg,ly < l3. In this case, we send
D; coding packets from both f; and f5, and there are R,
packets sent alone in fo. Send D3 coding packets of coding
pair (fs, f4), and residual packets R3 from f3. We have no
packets sent alone in fy. As for single flow f5, we send S5
single packets.

We can formulate OPCS using the definitions of D, R, S
as an Integer Linear Programming problem called OPCS-ILP.

Z ((wl + wj) -D; +w;R; + ijj) + Z WSk
(2,7)EPe kEPs

Max
D.R,S

TABLE I
NOTATIONS

Symbol [ Meaning

I' | Interval

T | Length of an interval

R | Relay node in charge

fi | ith flow at R

qi | virtual queue for f; at R

T; | Delay requirement of packets in f;
l; | The length of g;

w; | Weight of packets in f;
D; | Coding packets in coding pair (z,7),7 < j
R; | Residual packets in f;

S; | Single packets in f;
Ps | Set of single flows
P. | Set of coding pairs

S.t.
SE <lp, VkePy (1)

DZ+RZ§l2/\DZ+RJ§1]7V(2,])€’PC 2)

> (Di+R)+ > Ri+ > S<T,Vt<N

i<t j<t k<t
(4,§)EP. (4,5)EPe kePs

3)

D;,Si,R; €{0,1,2,3,...}. 4)

Constraint (1) says that packets being scheduled in single
flows cannot exceed the length of flow. Constraint (2) is
the length constraints for coding pairs. Constraint (3) spec-
ifies that scheduling packets shouldn’t exceed their delays.
Constraints (4) indicates that D, R, S must be nonnegative
integers.

For convenience, the notations used are summarized in
Table I.

IV. OPTIMAL SOLUTIONS

In this section, we drop integral constraints in OPCS-ILP
and construct a new problem based on Linear Programming
which is called OPCS-LP. We prove that given an optimal
solution to OPCS-LP, an equivalent optimal solution to OPCS-
ILP can be constructed in polynomial time. Another optimal
solution based on Minimum Cost Flow (OPCS-MCEF) is then
provided. We verify that OPCS-MCF has a better time com-
plexity than OPCS-LP.

A. Optimal solution based on LP

In this subsection, we drop integral constraints in OPCS-ILP
and reformulate it as OPCS-LP, then we prove that OPCS-
LP can provide integral optimal solution to OPCS. By taking
an in-depth study into the structural properties of OPCS, we
conclude that there must be an integral optimal solution by
OPCS-LP and all fractional optimal solutions can be rounded
to it.

Given an optimal solution to OPCS-LP, if all variables D,
R, S are integers, the solution is already an integral optimal
solution. For fractional solutions, we have the following the-
orem.
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Theorem 2: Given a fractional optimal solution to OPCS-
LP, we can round it to an equivalent integer solution in
polynomial time.

Proof: First we divide total interval I" by integral bound-
aries and cut I' into several partitions.

Definition 2: (integral boundary). An integral boundary is
certain deadline 7 that there is no time gap between the last
scheduling time of f; and T}, the scheduling of f; is exactly
stopped by its deadline constraints.

We further illustrate the notations of integral boundary and
time gap in Fig. 4. Without loss of generality, we refer to the
blank time slots at the end of standard schedule as packets
from a long single flow, whose weight is 0 and deadline is 7',
then 7' is an integral boundary itself. We define a manipulation
on fractional packets called “tiny exchange”, which is widely
used in our rounding process.

Definition 3: (tiny exchange). Tiny exchange from frac-
tional packets f; to fx is to cut a fractional part e from f;, and
add it to fj, without breaking any constraint. This is illustrated
in Fig. 5.

We start our rounding from single packets, and propose
some observations on these fractional packets.

Observation 1: For fractional single packets which dis-
tribute in one integral partition, they must be of same weight.

Observation 2: Fractional D, R packets from the same
coding pair can not coexist in one integral partition.

For a coding pair (4,7), if only the D packets or the R
packets are fractional, or both D, R packets are fractional but
satisfy D; + R; < [;, we can view these packets as fractional
single packets which must be of same weight of other factional
single packets within a partition. Because the numbers of
packets sent in these flows are less than their length and we
can perform tiny exchange on them within each partition as
we proved before. We can round these fractional packets until
they become integers or the D, R packets satisfy D;+R; = ;.

After these rounding processes, there is at most one fraction-
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TABLE I
TRANSFORMATION RULES

[ Rules | Description |

a) | Put two virtual vertices in set V: Vs (the source vertex)
and Vr (the sink vertex).

b) | We cut interval I' into several parts by delay constraints
of flows, each part is represented as a vertex Vi, called
interval vertex.

c) | For a single flow f; without coding opportunity, insert
vertex Vi to V, called single vertex.

d) | For coding pair (4, j), insert vertices V; and V" to V
as coding vertex, vertex V;" is call residual vertex for
fi-

e) | Edges between source vertex and single vertices: insert
an edge (Vs,Vy) for each single vertex V;’. The
capacity on this edge is Iy, and the cost is 0.

f) | Edges between single vertices and interval vertices:
insert an edge (Vi7, Vi) to E for every u < k. The
capacity of this edge is [, and cost is —wy.

g) | Edges between source vertex and coding pair vertices
are more sophisticated. For coding pair (¢, 7), we insert
two edges from source (Vs,V;") and (Vs,V}"). The
capacities are [; and [;, respectively, and the costs are
0.

h) | Edges between coding pair vertices: add edge (V, V;")
to E, which represents coding packets. The capacity on
this edge is I, and the cost is —w;. Insert (V;", V%)
which represents the all the packets sent from f;. The
capacity is l;, and the cost is 0.

i) | Edges between coding pair vertices and interval ver-
tices: insert edge (V;°, Vi) for every u < i, the capacity
on this edge is /; and the cost is —w;. Process for adding
(V{, Vi) is quite similar.

j) | Edges between interval vertices and sink vertex: insert
edge (Vif,Vr) to E for every interval vertex. The
capacity on (V,!, V) is To, — T, _1, this is the number
of time slots within this interval part.

al single flow within each partition. Fractional D;, R; packets
from coding pair (7,j) distribute in different partitions and
satisfy D; + R; = [;. Partitions with fractional packets are
classified as two types: with a fractional single flow or without
fractional single flow, as shown in Fig. 6. Also known is that
the amount of fractional single flows during interval I is either
0 or more than 2, because the sum of fractional single flows
must be an integer. The remained fractional flows can also be
rounded into integer ones. We omitted the detailed proof here
due to page limitation. [ ]

B. Optimal solution based on MCF

In this section, we show that OPCS can be equivalently
transformed into a Minimum Cost Flow (MCF) problem which
allows a lower time complexity. The MCF is to determine a
least cost shipment of a commodity through a network in order
to satisfy demands at certain nodes from available supplies
at other nodes [18]. Although MCF is commonly used in
scheduling optimization, it is not easy to apply OPCS directly
into a MCF problem. This is because we need to consider both
heterogenous delay constraints and dependence among coding
flows which make the formulation more complex.
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We perform our transformation according to the rules in
Table. I, where rules a) ~ d) and e) ~ j) respectively give the
vertices and edges meanings. The costs on edges are defined
as either zeros or negative of weights, however most minimum
cost flow algorithms support edges with negative costs. Define
set vertex set V and edge set &2 for OPCS-MCF graph.

We take an example to illustrate how to transform OPCS
into a corresponding MCF by applying these rules. Suppose
there are three flows f1, fo, f3 passing through our relay node,
{f1, f2} is a coding pair, f3 is a single flow. The corresponding
MCF graph is constructed in Fig. 7. As for coding pair
(f1, f2), the flow on edge (V;, V") stands for residual packet
Ry, and flow on edge (Vy,V]) represents coding packets
D1, thus flow on edge (Vf,v{) is the number of f; packets
which are sent before the deadline 7. Flow on edge (V;, V5)
stands for all packets sent in fo, flows on edges (Vi V{) and
(V£, V) represent the residual packets Ry sent during time
interval [1, 7] and [T} +1, T5] respectively. As for single flow
f3, flows on edges (V5*, Vi), (V5 Vi) and (Vi, Vi) stand for
single packets S5 sent during time intervals [1, 71 ], [T1+1, T5]
and [T + 1, T3] respectively.

We have the following propositions for the OPCS-MCF we
construct:

Lemma 1: Given a feasible integer flow F' to OPCS-MCF
with cost O, we can construct a feasible solution X with
objective value —O to OPCS-ILP.

Lemma 2: Given a feasible solution X to OPCS-ILP with
objective value —O, we can construct a feasible integer flow
F with cost O to OPCS-MCF.

The proof of these two lemmas is omitted due to page
limitation, and the theorem follows immediately by Lemmas 1
and 2:

Theorem 3: Given any optimal integer flow to OPCS-MCEF,
we can transform it into an optimal solution to OPCS-ILP
within polynomial time.

This theorem shows that we can solve the original problem
by any minimum cost flow algorithm. Note that the optimal
flow found by such algorithms are also integral due to the fact
that the capacity of edges in OPCS-MCEF are all integers.

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of our optimal
schedule solution OPT in terms of utility and packet drop
rate. We compare OPT with two baseline algorithms, namely
maximum weight packet first (MWPF) and urgent packet first
(UPF), considering the impacts of flow number and coding
opportunity.

A. Evaluation Setup

We focus on the evaluation of the single-hop scenario shown
in Fig. 2, the relay node R receives numerous flows and
can perform pairwise coding on packets from these flows.
R need to make a scheduling policy to sent packets to their
corresponding next-hop destination. We perform our simula-
tion under IEEE 802.11 standard which takes about 2 ms to
transmit a packet of 160 bytes. This is the same size of VoIP
packets using the G.711 codec [19], and we set 2 ms as the
length of a time slot in our model. We set the interval to be
40 ms which consists of 20 time slots, and this parameter is
also used in [4]. We assume the traffic pattern of video streams
to be random because that packets may be retransmitted due to
wireless channel error, or experience random delays in queue.

B. Baseline setup

We evaluate the performance of our optimal schedule OPT
by comparing it with two baseline algorithms: MWPF and
UPFE. MWPF preferentially sends the packet with maximum
weight among remaining packets, and UPF sends the packet
whose delay requirement is most stringent.

C. Performance Comparison

In this subsection, we compare the performance of OPT
with MWPF and UPF in terms of utility and packet drop
rate, and observe the impacts of flow number and coding
opportunity.

1) Impact of flow number: The loss probability of packet
due to channel error is set to be 10% for all downlinks. The
number of flows is 6, 8, 10, 15, 20, 25 and 30 respectively.
We set the coding opportunity as 60%, i.e. there are 4 single
flows and 3 coding pairs among 10 flows. The number of total
packets at relay is twice the flow number, i.e. each flow has
two packets arrive at the interval on average.

The performance is shown in Fig. 8. When flow traffic is
not heavy, there is sufficient time for relay to send packets, so
the packet drop rates are low and utilities among three policies
are quite close. As the scale of network grows, the superiority
of OPT is revealed. Relay can choose packets reasonably
by taking into account both deadline constraint and packet
weight. UPF may lose the packets with longer delay, and can
not make full use of coding opportunities when the traffic is
heavy. MWPF only considers the best option instantly without
looking further into the queues, which results in a suboptimal
solution in the long run. When the traffic is quite beyond the
relay’s ability to drain, the packet drop rate grows high for all
the three policies. Our optimal solution can outperform UPF
by up to 65.5% and MWPF by up to 67% in terms of utility,
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Fig. 8. Performance under various flow numbers
at its packet drop rate is 77.7% that of UPF and 33.3% that
of MWPF.

2) Impact of coding opportunities: Fig. 9 evaluates the
performance of three policies under different coding oppor-
tunities. The number of flows is set to be 20, and we assume
there are about 40 packets arrive in a 40 ms long interval. The
coding opportunity is set to be 20%, 30%, 40%, 50%, 60%,
70%, 80% respectively. For example, we have 4 coding pairs
among 20 flows when the coding opportunity is 20%.

We can see from Fig. 9(a) that OPT increases gradually
in utility as coding opportunity grows, and outperforms UPF
up to 134.5% and MWPF up to 104.5%. It is obvious that
coding opportunity plays a significant role in the improvement
of performance of the system. OPT achieves the lowest packet
drop rate which is about 76.6% that of the drop rate for UPF
and 62% that of MWPF as shown in Fig. 9(b). We can further
deduce that MWPF performs better than UPF in terms of
utility because it sends packets of larger weights. However
this strategy causes higher packet drop rate because it takes
no consideration on packet delay constraint.

VI. CONCLUSION

In this paper, we study the problem of optimal scheduling
with flows have pairwise coding opportunities, heterogeneous
delay constraints and weights. We formulate the problem as
an integer linear programming problem first, and then propose
two algorithms to solve the problem. Simulation results show
that our proposed solution improves the performance of net-
work, and leads to higher utility and lower packet drop rate.

We are currently extending this idea in several directions,
such as considering multihop scenarios, more complicated
coding schemes, and more realistic experiments of the wireless
network.
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